Bending and Free Vibration Analysis of Porous-Functionally-Graded (PFG) Beams Resting on Elastic Foundations
نویسندگان
چکیده
The bending and free vibration of porous functionally graded (PFG) beams resting on elastic foundations are analyzed. material features the PFG beam assumed to vary continuously through thickness according volume fraction components. foundation medium is also considered be linear, homogeneous, isotropic, modeled using Winkler-Pasternak law. hyperbolic shear deformation theory applied for kinematic relations, equations motion obtained Hamilton’s principle. An analytical solution presented accordingly, assuming that simply supported. Comparisons with open literature implemented verify validity such a formulation. effects foundations, porosity percentage span-to-depth ratio finally discussed in detail.
منابع مشابه
Optimization of Functionally Graded Beams Resting on Elastic Foundations
In this study, two goals are followed. First, by means of the Generalized Differential Quadrature (GDQ) method, parametric analysis on the vibration characteristics of three-parameter Functionally Graded (FG) beams on variable elastic foundations is studied. These parameters include (a) three parameters of power-law distribution, (b) variable Winkler foundation modulus, (c) two-parameter elasti...
متن کاملOn Static Bending, Elastic Buckling and Free Vibration Analysis of Symmetric Functionally Graded Sandwich Beams
This article presents Navier type closed-form solutions for static bending, elastic buckling and free vibration analysis of symmetric functionally graded (FG) sandwich beams using a hyperbolic shear deformation theory. The beam has FG skins and isotropic core. Material properties of FG skins are varied through the thickness according to the power law distribution. The present theory accounts fo...
متن کاملNonlinear Vibration Analysis of Piezoelectric Functionally Graded Porous Timoshenko Beams
In this paper, nonlinear vibration analysis of functionally graded piezoelectric (FGP) beam with porosities material is investigated based on the Timoshenko beam theory. Material properties of FG porous beam are described according to the rule of mixture which modified to approximate material properties with porosity phases. The Ritz method is used to obtain the governing equation which is then...
متن کاملFree Vibration Analysis of Functionally Graded Materials Non-uniform Beams
In this article, nonuniformity effects on free vibration analysis of functionally graded beams is discussed. variation in material properties is modeled after Powerlaw and exponential models and the non-uniformity is assumed to be exponentially varying in the width along the beams with constant thickness. Analytical solution is achieved for free vibration with simply supported conditions. It is...
متن کاملFree Vibration Analysis of Functionally Graded Beams with Cracks
This study introduces the free vibration analysis of multilayered symmetric sandwich Timoshenko beams, made of functionally graded materials with two edge cracked, using the finite element method and linear elastic fracture mechanic theory. The FG beam consists of 50 layers, located symmetrically to the neutral plane, whose material properties distribution change along the beam thickness, accor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fluid dynamics & materials processing
سال: 2023
ISSN: ['1555-2578', '1555-256X']
DOI: https://doi.org/10.32604/fdmp.2022.022327